Monatshefte für Chemie 115, 587-595 (1984)

Silylenolether-Funktionalisierung, 3. Mitt. Regioselektive Acylierung von Trimethylsilylenolethern mit 2-Alkoxy-1,3-dioxolanen — Synthese von α- und γ-geschützten Dicarbonylverbindungen

Eyup Akgün und Ulf Pindur*

Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, D-8700 Würzburg, Bundesrepublik Deutschland

(Eingegangen 26. September 1983. Angenommen 10. November 1983)

Silylenol Ether Functionalization, III. Regioselective Acylation of Trimethylsilylenol Ethers with 2-Alkoxy-1,3-dioxolanes. Synthesis of α - and γ -Protected Dicarbonyl Compounds

Acylation of silylenol ethers 1 and 9 yield with 2-alkoxy-2-alkyl(or aryl)-1,3dioxolanes 5 in a simple way by zinc dichloride-diethyl ether-catalysis regioselectively the α - and γ -protected dicarbonyl derivatives 6, 7, and 10. The enhanced reactivity of the cyclic orthoesters 5 in this reaction is discussed in comparison with acyclic reagents. The yield is influenced by steric effects at the reaction center.

(Keywords: Dicarbonyl compounds, α - and γ -protected; Synthesis, with trimethylsilylenol ethers and cyclic ortho esters)

Einleitung

In den ersten Mitteilungen^{1,2} berichteten wir über eine präparativ einfache, glatte α -regiospezifische Funktionalisierung von Silylenolethern mit Orthoameisensäure-triethylester, 2-Methoxy-1,3-dioxolan und 2-Alkoxy-2-methyl-1,3-dioxolan unter Zinkdichlorid-Diethyletherat-Katalyse. Im folgenden wird eine Erweiterung des synthetischen Potentials dieser Reaktion zur Gewinnung von selektiv geschützten 1,3- und 1,5-Dicarbonylverbindungen, die als Edukte für die Naturstoff- und Heterocyclen-Darstellung von besonderem Interesse sind, nach einem Eintopfverfahren aufgezeigt. In diesem Zusammenhang erfolgt auch, aus den präparativen Ergebnissen abgeleitet, eine Reaktivitätsbetrachtung von acyclischen und cyclischen Orthoestern gegenüber Silylenolethern.

Ergebnisse und Diskussion

Reaktionen von Silylenolethern 1 mit 2-Ethoxy-2-ethyl- und 2-Methoxy-2phenyl-1,3-dioxolan (5 c bzw. 5 d)

Auf unsere präparativen Befunde gestützt läßt sich die Regioselektivität der C-C-Verknüpfung von Orthoestern mit Silylenolethern (1 und 9) über folgenden Reaktionsweg deuten: Das im Reaktionsmedium durch Zinkdichlorid-Diethyletherat-Katalyse aus den S_N1 -aktiven Orthoestern erzeugte Alkoxycarbenium-Ion 2 reagiert mit 1 zur Zwischenstufe 3. Diese wird dann durch die aus dem Katalysator freiwerdenden Chlorid-Ionen zu 4 entsilyliert. Nach der Reaktivitätsvoraussage durch die Störungs-MO-Betrachtung sollte die C-C-Verknüpfung bevorzugt orbitalkontrolliert verlaufen³. Bei den von uns durchgeführten Umsetzungen von 1 mit 5 erhielten wir keine O-alkylierten Verbindungen, wie die ¹H-NMR-spektroskopische Rohproduktanalyse ergab. Es ist daher anzunehmen, daß die katalytische Erzeugung eines ambidenten Zinkenolats weitgehend unterdrückt ist und folglich die C-C-Verknüpfung über die Orbitalkontrolle dominiert.

R = H, Alkyl, Phenyl

Wir stellten fest, daß die 1,3-Dioxolane $5a - d[R = H, CH_3 (Lit.²), C_2H_5, C_6H_5]$ im Vergleich zu den entsprechenden acyclischen Orthoestern in dieser Reaktion eine deutlich höhere Reaktivität und Regioselektivität aufweisen⁴. Das relativ hohe elektrophile Potential des aus cyclischen Orthoestern erzeugten "Acylium-Äquivalents" 2 spiegelt sich daher in den experimentellen Ergebnissen wider. In meist glatten Reaktionen gelang es uns, nun auch mit den Dioxolanen 5c und 5d in cyclische und acyclische Silylenolether 1 im Eintopfverfahren eine latente Acylfunktion einzuführen. Abgesehen von wenigen sterisch bedingten Ausnahmen fallen die Ketone **6** und **7** in Ausbeuten von durchschnittlich 70% an. Lediglich ein Phenylsubstituent am Angriffszentrum von **1** (R^2 oder $R^3 = C_6H_5$) verlangsamt oder unterdrückt die Reaktion.

	1a	1b	1c	1c'	1d	1e	1f	1g
R ¹	C(CH ₃) ₃	C ₆ H ₅	CH ₂ C ₆ H ₅	СН ₃	C ₆ H ₅	(CH ₂) ₂	СН _а),	ا (CH ₂)ء
R²	н	Н	Н	C ₆ H₅	с н _з			
_	7a	6b	7c	_	7d	6e	7f	7g
		/ Þ				/e		

Die erfolgreiche C-C-Verknüpfung beim Einsatz der cyclischen Orthoester im Vergleich zu den acyclischen Vertretern kann auf das Zusammenwirken von sterischen und elektronischen Effekten im Alkoxycarbenium-Ion 2 zurückgeführt werden. Die Kristallstrukturanalyse des 2-Methyl-1,3-dioxolan-2-ylium-Ions⁵ lehrt, daß der Fünfring planar ist. Bei **5 f** sollte durch Gewinn an Mesomerieenergie der Phenylring zur Dioxolan-Einheit koplanar angeordnet sein, da die Hydrolysegeschwindigkeit von **5 d** im Vergleich zum acyclischen **8a** um den Faktor 40 erhöht ist⁶. Diese Erkenntnisse entsprechen unseren experimentellen Ergebnissen. Während z. B. **5 d** mit **1** glatt reagiert, erfolgt beim Einsatz des acyclischen Orthoesters **8a** lediglich mit dem sterisch weitgehend ungehinderten Silylenolether **1b** eine C-C-Verknüpfung. In den anderen Fällen ist der Angriff des Kations **8b** auf das π -System aus sterischen Gründen blockiert, so daß die im Medium vorhandenen Chlorid-Ionen das ambidente Kation **8b** im Sinne einer thermodynamisch kontrollierten, peripheren Reaktion zum Benzoesäureester **8c** entalkylieren⁷.

Eine Phenylgruppe am Reaktionsort des Silylenolethers $\mathbf{l} \mathbf{c}'$ blokkiert jedoch aus sterischen Gründen den Angriff des katalytisch erzeugten Kations $\mathbf{5f}$, so daß im Isomerengemisch aus $\mathbf{l} \mathbf{c}$ und $\mathbf{l} \mathbf{c}'$ lediglich das am Reaktionszentrum sterisch weniger anspruchsvolle Isomer $\mathbf{l} \mathbf{c}$ zu $\mathbf{7c}$ umgesetzt wird.

Eine periphere Reaktion am Elektrophil ist auch produktbestimmend, wenn das 1,3-Dioxolan-2-ylium-Ion eine erhöhte thermodynamische Stabilität aufweist⁸. Demzufolge blieb die Einführung einer latenten Säurefunktion in 1 mit dem 2,2-Dialkoxy-1,3-dioxolan zugunsten einer Entalkylierung ohne Erfolg⁹.

590

Reaktionen von 4-Trimethylsilyloxy-1,3-butadien (9) mit 2-Methoxy-, 2-Methoxy-2-methyl- und 2-Methoxy-2-phenyl-1,3-dioxolanen (5 a, b, d) sowie Orthoameisensäure-triethylester (5 e)

Der ambifunktionelle Silylenolether **9** kann von Elektrophilen an der α - oder γ -Position¹⁰ angegriffen werden. Die Störungs-MO-Betrachtung sagt einen γ -Angriff voraus, da diese Position den größten HOMO-Koeffizienten aufweist¹¹. Unsere präparativen Befunde stehen mit dieser Theorie im Einklang, denn in der Reaktion von **9** mit **5** a, **5** b, **5** d und dem Orthoameisensäuretriethylester **5** e erfolgt unter Zinkdichlorid-Diethyletherat-Katalyse ausnahmslos regioselektiver Angriff unter Bildung der γ -funktionalisierten Aldehyde **10** und **11** in Ausbeuten von 47-100%.

Die durch die stereoelektronische Kontrolle⁶ erhöhte Reaktionsbereitschaft cyclischer Orthoester gegenüber den entsprechenden acyclischen Vertretern wird auch in dieser Reaktion beim Einsatz von **5 a** und **5 e** in den Ausbeuten (100 bzw. 70%) bestätigt. In der Reihe der 1,3-Dioxolane selbst führt der Austausch des C-2-ständigen H-Atoms durch eine Methyl- oder Phenylgruppe infolge sterischer Effekte erwartungsgemäß zur Ausbeuteerniedrigung.

Die aus einem α -Angriff resultierende Konstitution kann durch die spektralen Daten von **10** und **11** eindeutig ausgeschlossen werden. Im IR-Spektrum ist die für α,β -ungesättigte Aldehyde charakteristische Carbonylstreckschwingung bei 1 695–1 705 cm⁻¹ anzutreffen¹² und in den ¹³C-NMR-Spektren erfolgt die Registrierung des Carbonylkohlenstoffs für dieses Strukturelement¹³ signifikant bei $\delta = 193$ ppm. Im Massenspektrometer wird bei 6, 7, 10 und 11 die Registrierung der Molekül-Ionen zugunsten des Alkoxycarbenium-Ion-Fragmentes unterdrückt. Diese Beobachtung steht mit der thermodynamischen Stabilität dieser Kationen im Einklang¹⁴.

Die präparativen Ergebnisse der Arbeit belegen, daß bei diesen Funktionalisierungen Zinkdichlorid-Diethyletherat als milder Katalysator anderen *Lewis*-Säuren, wie z. B. Titantetrachlorid¹⁵, im Hinblick auf Reaktionsführung und Ausbeute deutlich überlegen ist.

Experimenteller Teil

IR-Spektren: Beckman IR 4240. ¹H-NMR-Spektren: Jeol JNMC 60 HL. ¹³C-NMR-Spektren: Bruker WM 400. Massenspektren: LKB 2091. CHN-Mikroanalysen: Carlo Erba Strumentazione Mod. 1106. Schmelzpunkte (unkorrigiert): Linström-Gerät. Die Silylenolether **1** wurden nach Lit. ¹⁶ hergestellt, **9** wurde käuflich erworben¹⁷.

Allgemeine Vorschrift zur regioselektiven Acylierung von Silylenolethern 1 und 9 mit Orthoestern

Zu einer Lösung von 10 mmol 1 bzw. 9 und 10 mmol Acylierungsreagenz 5 in 25 ml Dichlormethan werden 5 mmol Zinkdichlorid-Diethyletherat¹⁸ mit einer Spritze bei RT unter Stickstoffeinleitung zugetropft und 1 h gerührt. Dann wird das Reaktionsgemisch mit gesättigter NaHCO₃-Lösung versetzt und mit Natriumsulfat getrocknet, und nach dem Entfernen des Lösungsmittels wird der Rückstand über eine Säule chromatographiert (Kieselgel; *n*-Hexan/Essigsäureethylester 9:1).

2-(2-Ethyl-1,3-dioxolan-2-yl)-1-phenylethanon (6b)

74% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 0.98$ (t, 3 H, J = 7.5 Hz, CH₃); 1.88 (q, 2 H, J = 7.5 Hz, CH₂); 3.3 (s, 2 H, CH₂); 3.9 (s, 4 H, Dioxolan-H); 7.2–8.1 (m, 5 H, Phenyl-H). IR (Film): 2995, 2900, 1680 (C=O), 1605, 1455, 1070, 755, 695 cm⁻¹. MS (*m*/e): 191, 161, 149, 105, 77.

 $C_{13}H_{16}O_3$ (220,3). Ber. C 70,89 H 7,32. Gef. C 70,78 H 7,27.

2-(2-Ethyl-1,3-dioxolan-2-yl)-cyclopentanon (6e)

70% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 0.90$ (t, 3 H, J = 7.5 Hz, CH₃); 1,6–2,8 (m, 9 H, 4 CH₂, CH); 3,9–4,1 (m, 4 H, Dioxolan-H). IR (Film): 2 980, 2 890, 1 740 (C=O), 1 195, 1 150, 1 075, 1 050, 940 cm⁻¹. MS (*m*/e): 155, 127, 111, 101, 83.

 $C_{10}H_{16}O_3$ (184,2). Ber. C 65,19 H 8,75. Gef. C 65,02 H 8,58.

3,3-Dimethyl-1-(2-phenyl-1,3-dioxolan-2-yl)-2-butanon (7a)

62% Ausb; Öl; ¹H-NMR (CDCl₃): $\delta = 1,0$ [s, 9 H, C(CH₃)₃]; 3,15 (s, 2 H, CH₂); 3,5 -4,2 (m, 4 H, Dioxolan-H); 7,1 -7,6 (m, 5 H, Phenyl-H). IR (Film): 2960, 2880, 1710 (C=O), 1470, 1440, 1360, 1270, 1040, 695 cm⁻¹. MS (*m*/e): 191, 171, 149, 105, 77.

 $C_{15}H_{20}O_3$ (248,3). Ber. C 72,55 H 8,11. Gef. C 72,26 H 8,27.

592

1-Phenyl-2-(2-phenyl-1,3-dioxolan-2-yl)ethanon (7b)

 $\begin{array}{l} 88\% \ {\rm Ausb.;} \ \ddot{\rm Ol}; \ {}^1{\rm H}\text{-}{\rm NMR} \ ({\rm CDCl}_3); \ \delta = 3,50 \ ({\rm s}, \ 2\,{\rm H}, \ {\rm CH}_2); \ 3,6-4,0 \ ({\rm m}, \ 4\,{\rm H}, \\ {\rm Dioxolan-H}); \ 7,1-8,0 \ ({\rm m}, \ 10\,{\rm H}, \ {\rm Phenyl-H}). \ {\rm IR} \ ({\rm Film}): \ 3\,070, \ 2\,990, \ 2\,910, \ 1\,685 \\ ({\rm C}={\rm O}), \ 1\,600, \ 1\,455, \ 1\,185, \ 1\,030, \ 705\ {\rm cm^{-1}}. \ {\rm MS} \ (m/e): \ 208, \ 191, \ 149, \ 105, \ 77. \\ {\rm C}_{17}{\rm H}_{16}{\rm O}_3 \ (268,3). \quad {\rm Ber.} \ {\rm C}\,76,10\ {\rm H}\,6,01. \quad {\rm Gef.} \ {\rm C}\,75,95\ {\rm H}\,6,08. \end{array}$

1-Phenyl-3-(2-phenyl-1,3-dioxolan-2-yl)-2-propanon (7 c)

28% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 3,02$ (s, 2 H, CH₂); 3,73 (s, 2 H, CH₂); 3,6–4,2 (m, 4 H, Dioxolan-H); 7,0–7,6 (m, 10 H, Phenyl-H). IR (Film): 3065, 3030, 2900, 1710 (C=O), 1600, 1495, 1450, 1025, 700. MS (m/e): 205, 149, 105, 91, 77.

C₁₈H₁₈O₃ (282,3). Ber. C76,57 H 6,43. Gef. C76,41 H 6,48.

1-Phenyl-2-(2-phenyl-1,3-dioxolan-2-yl)-1-propanon (7d)

59% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 1,17$ (d, 3 H, J = 7,5 Hz, CH₃); 3,3 – 4,6 (m, 5 H, Dioxolan-H, CH); 7,0 – 8,1 (m, 10 H, Phenyl-H). IR (Film): 3100, 3020, 2930, 1740, 1700 (C=O), 1615, 1465, 1245, 1105, 720 cm⁻¹. MS (m/e): 238, 149, 105, 77.

 $C_{18}H_{18}O_3$ (282,3). Ber. C 76,57 H 6,43. Gef. C 76,44 H 6,46.

2-(2-Phenyl-1,3-dioxolan-2-yl)-cyclopentanon (7e)

72% Ausb.; Schmp.: $82-84^{\circ}$ (Ether); ¹H-NMR (CDCl₃): $\delta = 1,5-2,9$ (m, 7 H, 3 × CH₂, CH); 3,5-4,2 (m, 4 H, Dioxolan-H); 7,1-7,6 (m, 5 H, Phenyl-H). IR (KBr): 2 970, 2 890, 1 730 (C=O), 1 215, 1 030, 950, 740, 700 cm⁻¹. MS (*m*/e): 155, 149, 105, 77.

 $C_{14}H_{16}O_3$ (232,2). Ber. C 72,32 H 6,94. Gef. C 72,75 H 7,15.

2-(2-Phenyl-1,3-dioxolan-2-yl)-cyclohexanon (7 f)

 $\begin{array}{l} 70\% \ \, {\rm Ausb.;} \ \, \ddot{\rm O}{\rm l}; \ \, ^1{\rm H-NMR} \ \, ({\rm CDCl}_3): \ \, \delta=1,4-3,2 \ \, ({\rm m},\ 9\,{\rm H},\ 4\times{\rm CH}_2,\ {\rm CH}); \\ 3,5-4,1 \ \, ({\rm m},\ 4\,{\rm H},\ {\rm Dioxolan-H}); \ \, 7,1-7,6 \ \, ({\rm m},\ 5\,{\rm H},\ {\rm Phenyl-H}). \ \, {\rm IR} \ \, ({\rm Film}):\ \, 2\,980, \\ 2\,930,\ 2\,900,\ 1\,735 \ \, ({\rm C=O}),\ 1\,465,\ 1\,330,\ 1\,240. \ \, {\rm MS} \ \, (m/{\rm e}):\ \, 169,\ 149,\ 105,\ 77. \\ {\rm C}_{15}{\rm H}_{18}{\rm O}_3 \ \, (246,3). \ \ \, {\rm Ber.\ C}\,73,14 \ \, {\rm H}\,7,36. \ \, {\rm Gef.\ C}\,73,46 \ \, {\rm H}\,7,56. \end{array}$

2 - (2 - Phenyl - 1, 3 - dioxolan - 2 - yl) - cycloheptanon (7 g)

73% Ausb.; Schmp.: 83–84° (Ether); ¹H-NMR (CDCl₃): $\delta = 1,1-3,2$ (m, 10 H, $5 \times CH_2$); 3,5–4,1 (m, 4 H, Dioxolan-H); 4,53 (t, 1 H, J = 6 Hz, CH), 7,1–8,1 (m, 5 H, Phenyl-H). IR (KBr): 2940, 1705 (C=O), 1450, 1275, 1240, 1165, 1030, 700 cm⁻¹. MS (m/e): 183, 149, 105, 77.

 $C_{16}H_{20}O_3$ (260,3). Ber. C 73,81 H 7,74. Gef. C 74,40 H 7,73.

4-(1,3-Dioxolan-2-yl)-2-butenal (10 a)

100% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 2,5-2,85~({\rm m},2~{\rm H},{\rm CH}_2);$ 3,7–4,1 (m, 4 H, Dioxolan-H); 5,0 (t, 1 H, $J=4,5~{\rm Hz},~{\rm CH});$ 5,9–7,1 (m, 2 H, Vinyl-H); 9,38 (d, 1 H, $J=7,5~{\rm Hz},~{\rm CHO}$). $^{13}{\rm C}$ -NMR (CDCl₃): $\delta = 36,5~({\rm CH}_2,{\rm t}),$ 64,4 (Dioxolan-C, t); 101,6 (CH, d); 134,6 (=CH, d), 150,7 (=CH, d); 192,7 (C=O, d). IR (Film): 2960, 2900, 1695 (C=O), 1640, 1400, 1130, 1040, 980 cm⁻¹. MS (m/e): 141, 73, 69, 55.

C₇H₁₀O₃ (142,1). Ber. C 59,14 H 7,09. Gef. C 59,40 H 7,29.

4-(2-Methyl-1,3-dioxolan-2-yl)-2-butenal (10b)

62% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 1,35$ (s, 3 H, CH₃); 2,62 (AB, 2 H, J = 7,5 Hz, CH₂); 3,95 (s, 4 H, Dioxolan-H); 5,7 – 7,9 (m, 2 H, Vinyl-H); 9,4 (d, 1 H, J = 7,5 Hz, CHO). ¹³C-NMR (CDCl₃): $\delta = 24,27$ (CH₃, q); 42,1 (CH₂, t); 64,8 (Dioxolan-C, t); 108,7 (s, Methin-C); 123,7 (=CH, d); 145,8 (=CH, d); 193,7 (C=O, d). IR (Film): 3 020, 2 920, 1 705 (C=O), 1 395, 1 230, 1 160, 1 060, 1 000, 970 cm⁻¹. MS (*m*/e): 141, 97, 87, 69.

 $C_8H_{12}O_3$ (156,1). Ber. C61,52 H7,74. Gef. C61,25 H7,80.

4-(2-Phenyl-1,3-dioxolan-2-yl)-2-butenal (10 c)

47% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 2,87$ (AB, 2 H, J = 7,5 Hz, CH₂); 3,5 -4,2 (m, 4 H, Dioxolan-H); 5,6 -7,1 (m, 2 H, Vinyl-H); 7,1 -7,6 (m, 5 H, Phenyl-H); 9,36 (d, 1 H, J = 8,25 Hz, CHO). ¹³C-NMR (CDCl₃): $\delta = 43,4$ (CH₂, t); 64,5 (Dioxolan-C, t); 108,6 (Methin-C, s); 135,2 (=CH, d); 151,7 (=CH, d); 193,4 (C=O, d); Phenyl-C: 125.2 (C-4); 127,9, 128,0 (C-2, C-3); 141,2 (C-1). IR (Film): 2 960, 2 900, 1 695 (C=O), 1 490, 1 450, 1 130, 1 040, 970, 765, 705 cm⁻¹. MS (m/e): 149, 141, 128, 107, 77.

 $C_{13}H_{14}O_3$ (218,2). Ber. C 71,54 H 6,46. Gef. C 71,89 H 6,45.

5,5-Diethoxy-2-pentenal (11)

70% Ausb.; Öl; ¹H-NMR (CDCl₃): $\delta = 1,2$ (t, 6 H, J = 7,5 Hz; 2 × CH₃); 2,65 (t, 2 H, J = 6,0 Hz; CH₂, Feinaufspalt zum Dublett); 3,3 – 3,9 (m, 4 H, 2 × CH₂); 4,62 (t, 1 H, J = 6,0 Hz; CH); 5,9 – 7,1 (m, 2 H, Vinyl-H); 9,37 (d, 1 H, J = 7,5 Hz, CHO). ¹³C-NMR (CDCl₃): $\delta = 14,7$ (CH₃, q); 36,9 (CH₂, t); 61,1 (Dioxolan-C, t); 100,5 (CH, d); 134,3 (=CH, d); 152 (=CH, d); 192,7 (C=O, d). IR (Film): 2 990, 2 900, 1 700 (C=O), 1 650, 1 380, 1 350, 1 125, 1 065, 980 cm⁻¹. MS (m/e): 171, 127, 103, 99, 71.

C₉H₁₆O₃ (172,2). Ber. C62,76 H 9,36. Gef. C62,94 H 9,49.

Literatur

- ¹ 1. Mitt.: Akgün E., Pindur U., Chem.-Ztg. 107, 236 (1983).
- ² 2. Mitt.: Akgün E., Pindur U., Chem.-Ztg. 107, 237 (1983).
- ³ Fleming I., Frontier Orbitals and Organic Chemical Reactions, S. 43 ff. Chichester-New York-Brisbane-Toronto: Wiley & Sons. 1976. Noyori R., Nishida I., Sakata J., J. Amer. Chem. Soc. 105, 1598 (1983).
- ⁴ Chiang Y., Kresge A. J., Salomaa P., Young C. J., J. Amer. Chem. Soc. 96, 4494 (1974).
- ⁵ Paulsen H., Dammeyer R., Chem. Ber. 106, 2324 (1973).
- ⁶ Bouab O., Lamaty G., Moreau C., Pomares O., Deslongchamps P., Ruest L., Can. J. Chem. 58, 567 (1980).
- ⁷ Hünig S., Angew. Chem. **76**, 400 (1964); Angew. Chem. Int. Ed. Engl. **3**, 548 (1964).
- ⁸ Holmes J. L., Lossing F. P., Can. J. Chem. **60**, 2365 (1982).
- ⁹ Akgün E., Diplomarbeit, Univ. Marburg, 1977.
- ¹⁰ Fleming I., Iqbal J., Krebs E.-P., Tetrahedron **39**, 841 (1983). Paterson I., Price L. G., Tetrahedron Lett. **1981**, 2833. Fleming I., Lee T. V., Tetrahedron Lett. **1981**, 705. Mukaiyama T., Ishida A., Chem. Lett. **1975**, 319.

- ¹¹ Alston P. V., Ottenbrite R. M., J. Org. Chem. 40, 1111 (1975).
- ¹² Williams D. H., Fleming G., Spektroskopische Methoden in der Organischen Chemie, S. 63. Stuttgart: G. Thieme. 1971.
- ¹³ Levy G. C., Lichter R. L., Nelson G. L., Carbon-13-Nuclear Magnetic Resonance Spectroscopy, S. 141. New York-Chichester-Brisbane-Toronto: Wiley. 1980.
- ¹⁴ Taft R. W., Martin R. H., Lampe R. W., J. Amer. Chem. Soc. 87, 2490 (1965); ibid. 88, 1353 (1966).
- ¹⁵ Mukaiyama T., Angew. Chem. 89, 858 (1977).
- ¹⁶ Emde H., Götz A., Hofmann K., Simchen G., Liebigs Ann. Chem. 1981, 1643.
- ¹⁷ Aldrich Company, 22, 722-726.
- ¹⁸ House H. O., Crumrine D. S., Teranishi A. Y., Olmstead H. D., J. Amer. Chem. Soc. **95**, 3310 (1973).